LESSON PLAN: ENGINEERING CHEMISTRY | Discipline:
CIVIL ENGG &
MECHANICAL
ENGG. | Semester: | Name of the Teaching Faculty: TUSHAR RANJAN MOHANTA | |--|-----------------------------------|--| | Subject: | No. of days/per | Semester From Date: 29/01/2024 To Date: 14/05/2024 | | ENGINEERING
CHEMISTRY | week class
allotted: 04 | No. of Weeks: 15 | | Week | Class Day | Theory | | | 1 st | Introduction, Fundamental particles: Electron, Proton & Neutron (mass and charge) | | 1 st | 2 nd | Ruthherford's Atomic model (Experiment, postulates), Failures of Rutherford's Atomic model | | 2 nd | 1 st | Atomic mass and Mass number, Definition, examples and properties of Isotopes, isobars and isotones, Bohr's atomic model (Postulates only) | | _ | 2 nd | Bohr-Bury scheme, Aufbau's principle | | | 1 st | Hund's rule, Electronic configuration (up to atomic no. 30) | | 3 rd | 2 nd | Concept of Arrhenius, Bronsted Lowry Theory with examples (Postulates and limitations only). | | 4 th | 1 st | Lewis theory for acidand base with examples (Postulates and limitations only). Neutralization of acid & base. | | 4 | 2 nd | Types of salts (Normal, acidic, basic, double, complex and mixed Salts, definitions with 2 examples from each). | | 5 th | 1 st | Definition and types (Strong & weak) of Electrolytes with example. Electrolysis (Principle & process) with example of NaCl (fused and aqueous solution). | | 2''' | 2 nd | Faraday's 1st law of Electrolysis (Statement, mathematical expression, numerical) | | | 1 st | Faraday's 2nd law of Electrolysis (Statement, Mathematical expression, numerical), Industrial application of Electrolysis- Electroplating (Zinc only) | | 6^{th} | 2 nd | Corrosion: Defination & Types, Atmospheric Corrosion | | | 1 st | Waterline corrosion. Mechanism of rusting of Iron only.Protection from Corrosion by (i) Alloying and (ii) Galvanization | | 7^{th} | 2 nd | Saturated and Unsaturated Hydrocarbons (Definition with example) | | 8th | 1 st | Aliphatic and Aromatic Hydrocarbons (Huckle's rule only). Difference between Aliphatic and aromatic hydrocarbons | | | 2 nd | IUPAC system of nomenclature of Alkane | | | 1 st | IUPAC system of nomenclature of Alkane-examples | | 9 th | 2 nd | IUPAC system of nomenclature of Alkene | | 10 th | 1 st | IUPAC system of nomenclature of Alkene-examples | | | 2 nd | IUPAC system of nomenclature of Alkyne | | 11 th | 1 st | IUPAC system of nomenclature of Alkyne-examples | | | 2 nd | IUPAC system of nomenclature of alkyl halide and alcohol | | 12 th | 1 st | Uses of some common aromatic compounds (Benzene, Toluene, BHC, Phenol, Naphthalene, Anthracene and Benzoic acid) in daily life. | |------------------|-----------------|---| | | 2 nd | Definition of Monomer, Polymer, Homo-polymer, Co-polymer and Degree of polymerization. | | 13 th | 1 st | Difference between Thermosetting and Thermoplastic | | | 2 nd | Composition and uses of Polythene, & Poly-Vinyl Chloride | | | 1 st | Composition and uses of Bakelite | | 14 th | 2 nd | Definition of Elastomer (Rubber). Natural Rubber (it's draw backs) | | 15 th | 1 st | Vulcanisation of Rubber. Advantages of Vulcanised rubber over raw rubber. | | | 2 nd | Pesticides: Insecticides, herbicides, fungicides-Examples and uses | Tushar Ranjan Mohanta Sr. Lect. In Math & Sc. (Chemistry) Govt. Polytechnic Angul ## LESSON PLAN: ENGINEERING CHEMISTRY | Discipline:
CIVIL ENGG. &
MECHANICAL
ENGG. | Semester: | Name of the Teaching Faculty: SWATILEENA SATPATHY | |---|--|---| | Subject:
ENGINEERING
CHEMISTRY | No. of days/per
week class
allotted: 04 | Semester From Date: 29/01/2024 To Date: 14/05/2024 No. of Weeks: 15 | | Week | Class Day | Theory | | | 1 st | Chemical Bonding: Definition, Types, Electrovalent bond: NaCl, MgCl ₂ | | 1 st | 2 nd | Covalent Bond: Definition with examples H ₂ , Cl ₂ , O ₂ , N ₂ , H ₂ O | | 2nd | 1 st | Covalent Bond: CH ₄ , NH ₃ , Coordinate bond: NH ₄ +, SO ₂ | | | 2 nd | Definitions of Atomic weight, Molecular weight, Equivalent weight | | | 1 st | Determination of Equivalent weight of Acid, Base and Salt. | | 3rd | 2 nd | Modes of expression of the concentrations (Molarity) with Simple Problems | | 4 th | 1 st | Modes of expression of the concentrations (Normality)with Simple Problems | | | 2 nd | Modes of expression of the concentrations (Molality) with Simple Problems | | 5th | 2 nd | pH of solution (definition with simple numerical) | | | 2 | Importance of pH in industry (sugar, textile, paper industries only) | | 6 th | 1 st | Definition of Mineral, ores, gangue with example. Distinction between Ores And Minerals, Steps of Metallurgy | | | 2 nd | Ore Dressing, Concentration of Ore (Gravity Separation, Magnetic Separation) | | | 1 st | Concentration of Ore (Froth floatation & leaching) | | 7 th | 2 nd | Oxidation (Calcinations, Roasting) | | 8 th | 1 st | Reduction (Smelting, Definition & examples of flux, slag) | | | 2 nd | Refining of the metal (Electrorefining, & Distillation only) | | 9th | 1 st | Definition of alloy. Types of alloys (Ferro, Non Ferro & Amalgam) with example | | | 2 nd | Composition and uses of Brass, Bronze, Alnico, Duralumin | | 10 th | 1 st | Sources of water, Soft water, Hard water, Hardness, Types of Hardness (temporary or carbonate and permanent or non-carbonate) | | | 2 nd | Removal of hardness by lime soda method (hot lime—Principle, process & advantages | | 11 th | 1 st | Removal of hardness by lime soda method (Cold lime— Principle, process & advantages) | | | 2 nd | Advantages of Hot lime over cold lime process. Organic Ion exchange method (Principle) | | 12 th | 1 st | Organic Ion exchange method (process, and regeneration of exhausted resins) | |------------------|-----------------|---| | | 2 nd | Lubricant: Definition, Types, Purpose of Lubrication | | 13 th | 1 st | Specific uses of Graphite, Oil, Grease | | | 2 nd | Fuel: Definition, Types, Choice of Good Fuel | | 1.4th | 1 st | Composition & Uses of Diesel, Petrol, Kerosene | | 14 th | 2 nd | Composition & Uses of Producer Gas, Water Gas, Coal Gas | | 15 th | 1 st | Composition & Uses of LPG, CNG | | | 2 nd | Biofertilizers & their uses | Swattleena Satpathy Lect. In Chemistry Govt. Polytechnic Angul