DISCIPLINECIVIL	SEMESTER:3RD	NAME OF THE TEACHING FACULTY:SIMARANI NAYAK
SUBJECT NAME:		
STRUCTURAL	No. of Days per Week	Semester From Date: 01/08/2023 To Date: 30/11/2023 No of Weeks :18
MECHANICS	Class Alloted: 4days	
Week	Class Day	Theory Topics
August 1St Week	1st week-	Review Of Basic Concepts
	(1st,2nd,3rdday)	1.1 Basic Principle of Mechanics: Force, Moment, support conditions, Conditions of
		equilibrium, C.G & MI, Free body diagram
		1.2 Review of CG and MI of different sections
August 2nd Week 3rd	2nd week- 1st	2.1 Simple Stresses and Strains
Week 4th Week	day,2nd,3rd day) 3rd	Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity,
	week - 1st,2nd	Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue
	day,3rd day	Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile,
	4th week-	Compressive and Shear strains, Complimentary shear
	1st,2nd,3rd,day	stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and
	2nd week- 1st,2nd 3rd	Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in
	day	dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic
		constants.2.2Application of simple stress and strain in engineering field:Behaviour of ductile and brittle
		materials under direct loads, Stress Strain curve of a ductile material, Limit of proportionality, Elastic limit,
		Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area,
		Significance of percentage elongation and reduction in area of cross section, Deformation of prismatic bars
		due to uniaxial load, Deformation of prismatic bars due to its self weight. 2.3 Complex stress and
		strainPrincipal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal
		stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its
		application to solve problems of complex stresses
August 5th Week	5th week-1st,2nd,3rd	3.1 Stresses in beams due to bending: Bending stress in beams – Theory of simple
eptember 1st	day	bending – Assumptions – Moment of resistance – Equation for Flexure– Flexural stress
week	1st week -1st,2nd,3rd	distribution – Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of
	day	Section modulus
		3.2 Shear stresses in beams: Shear stress distribution in beams of rectangular, circular
		and standard sections symmetrical about vertical axis.
		3.3 Stresses in shafts due to torsion: Concept of torsion, basic assumptions of pure torsion, torsion of solid
	i	and hollow circular sections, polar moment of inertia, torsional
	9	hearing stresses, angle of twist, torsional rigidity, equation of torsion
		3.4 Combined bending and direct stresses: Combination of stresses, Combined direct and bending stresses,
		Maximum and Minimum stresses in Sections, Conditions for no tension, Limit of eccentricity, Middle
		hird/fourth rule, Core or Kern for square, rectangular
	6	Ind circular sections, chimneys, dams and retaining walls
		Semarou
		PTHF

eptember 2nd	2nd week-	Columns and Struts
veek	1st,2nd,3rd day	4.1 Columns and Struts, Definition, Short and Long columns, End conditions, Equivalent
		length / Effective length, Slenderness ratio, Axially loaded short and long column, Euler's
		theory of long columns, Critical load for Columns with different end conditions
eptember 3rd	3rd week-1st, 2nd, 3rd	Shear Force and Bending Moment
eek 4th Week	day 4th	5.1 Types of loads and beams:
ctober 1st week	week-1st, 2nd, 3rd	Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of
	day	Supports: Simple support, Roller support, Hinged support, Fixed support, Types of
		Reactions: Vertical reaction, Horizontal reaction, Moment reaction, Types of Beams based
	day	on support conditions: Calculation of support reactions using equations of static equilibrium.
	,	5.2 Shear force and bending moment in beams:
		Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of
		general cases of determinate beams with concentrated loads and udl only, S.F and B.M
		diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of
		maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M
October 2nd week	2nd week-1st, 2nd,	Slope and Deflection
3rd week	3rd day	6.1 Introduction: Shape and nature of elastic curve (deflection curve); Relationship between
	3rdweek-1st, 2nd, 3rd	slope, deflection and curvature (No derivation), Importance of slope and deflection.
	day ,	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and
		uniformly distributed load (by Double Integration method, Macaulay's method)
November 1stweek	1st week- 1st, 2nd,	Indeterminate Beams
2nd week	3rd day	7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of
	2nd week-1st, 2nd,	propped cantilever, fixed and two span continuous beams by principle of superposition, SF
	3rd day	and BM diagrams (point load and udl covering full span
November 3rdweek	3rd week- 1st, 2nd,	8 Trusses
4th week	3rd day	8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of
	4th week-1st, 2nd, 3rd	indeterminacy, stable and unstable trusses, advantages of trusses
	day	8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)

Algeran 31/07/2023 PTGF Civil