Discipline: ELECTRICAL	Semester: 5 th Sem	Name of the Teaching Faculty: MRS. MONALISA PANI
Subject: ENERGY CONVERSION-II	No of days/per week	Semester From: 15.09.2022 to 22.12.2022 No. of weeks: 15 weeks
Week	Class Day	Theory Topics
	1 st	1. ALTERNATOR:
		1.1. Types of alternator and their constructional features.
	2 nd	1.2. Basic working principle of alternator and the relation between speed and
1 st		frequency.
	3 rd	.3. Terminology in armature winding and expressions for winding factors
		(Pitch factor, Distribution factor).
	4 th	1.4. Explain harmonics, its causes and impact on winding factor.
	1 st	1.5. E.M.F equation of alternator. (Solve numerical problems).
	2 nd	1.5. E.M.F equation of alternator. (Solve numerical problems).
	3 rd	1.6. Explain Armature reaction and its effect on emf at different
		power factor of load.
	4 th	1.7. The vector diagram of loaded alternator. (Solve numerical problems)
	1st	1.8. Testing of alternator (Solve numerical problems)
, 1 A 1		1.8.1. Open circuit test.
	2 nd	1.8.2. Short circuit test.
3 rd	3'"	1.9. Determination of voltage regulation of Alternator by direct loading and
		synchronous impedance method. (Solve numerical problems)
	4***	1.9. Determination of voltage regulation of Alternator by direct loading and
		Synchronous impedance method. (Solve numerical problems)
	1°'	1.10. Parallel operation of alternator using synchro-scope and dark &
		Bright lamp method.
	2 nd	1.11. Explain distribution of load by parallel connected alternators.
	o rd 2	2. SYNCHRONOUS MOTOR:
		2.1. Constructional feature of Synchronous Motor.
		2.2. Principles of operation, concept of load angle
4	th	2.3. Derive torque, power developed.

5 th	1 st	2.4. Effect of varying load with constant excitation.
		2.5. Effect of varying excitation with constant load.
	2 nd	2.6. Power angle characteristics of cylindrical rotor motor.
	3 rd	2.7. Explain effect of excitation on Armature current and power factor.
	4 th	2.8. Hunting in Synchronous Motor. 2.9. Function of Damper Bars in synchronous motor and generator.
	,	Class Test
	1 st	2.10. Describe method of starting of Synchronous motor.
	2 nd	2.11. State application of synchronous motor.
:h	- rd	3. THREE PHASE INDUCTION MOTOR:
	3 rd	3.1. Production of rotating magnetic field.
	a th	
		3.2. Constructional feature of Squirrel cage and Slip ring induction motors.
	1 st	3.3. Working principles of operation of 3-phase Induction motor.
	2 nd	3.4. Define fine slip speed, slip and establish the relation of slip with
7 th		rotor quantities.
,	3 rd	3.5. Derive expression for torque during starting and running conditions and
	5	derive conditions for maximum torque. (solve numerical problems)
	4 th	3.6. Torque-slip characteristics.
	1. st	3.7. Derive relation between full load torque and starting torque etc.
		(solve numerical problems)
	2 nd	3.8. Establish the relations between Rotor Copper loss, Rotor output and
		Gross Torque and relationship of slip with rotor copper loss.
8 th		(solve numerical problems)
	3 rd	3.9. Methods of starting and different types of starters used for
		three phase Induction motor.
	4 th	3.10. Explain speed control by Voltage Control, Rotor resistance control,
		Pole changing, frequency control methods.
9 th	1 st	3.10. Explain speed control by Voltage Control, Rotor resistance control,
	2 nd	Pole changing, frequency control methods. 3.11. Plugging as applicable to three phase induction motor.
	3 rd	3.12. Describe different types of motor enclosures.
	4 th	3.13. Explain principle of Induction Generator and state its applications.
	1 st	4. SINGLE PHASE INDUCTION MOTOR:
		4.1. Introduction and Explain Ferrari's principle.
		4.2. Explain double revolving field theory and Cross-field theory to
	2 nd	analyze starting torque of 1-phase induction motor. Internal Assessment
10 th	3 rd	4.2. Explain double revolving field theory and Cross-field theory to
10		analyze starting torque of 1-phase induction motor.
	4 th	4.3. Explain Working principle, Torque speed characteristics, performance
		characteristics and application of following single phase motors.
	1	and approach of following single phase motors.

	1 st	4.3.2. Capacitor Start motor.
		4.3.3. Capacitor start, capacitor run motor.
	2 nd	4.3.4. Permanent capacitor type motor.
11 th		4.3.5. Shaded pole motor.
	3 rd	4.4. Explain the method to change the direction of rotation of above motors.
	4 th	4.4. Explain the method to change the direction of rotation of above motors.
	1 st	5. COMMUTATOR MOTORS:
		5.1. Construction, working principle, running characteristic and application of single
		phase series motor.
12 th	2 nd	5.1. Construction, working principle, running characteristic and application of
2		single phase series motor.
*******	3 rd	5.2. Construction, working principle and application of Universal motors.
-	4 th	5.2. Construction, working principle and application of Universal motors.
	1. st	5.3. Working principle of Repulsion start Motor, Repulsion start Induction
		run motor, Repulsion Induction motor.
******	2 nd	5.3. Working principle of Repulsion start Motor, Repulsion start Induction
13 th		run motor, Repulsion Induction motor.
13	3 rd	6. SPECIAL ELECTRICAL MACHINE:
		6.1. Principle of Stepper motor.
		6.2. Classification of Stepper motor.
	4 th	6.3. Principle of variable reluctant stepper motor.
	1. st	6.4. Principle of Permanent magnet stepper motor.
	2 nd	6.5. Principle of hybrid stepper motor.
14 th	3 rd	6.6. Applications of Stepper motor.
-	4 th	7. THREE PHASE TRANSFORMERS:
		7.1. Explain Grouping of winding, Advantages.
	1 st	Class Test
15 th	2 nd	7.2. Explain parallel operation of the three phase transformers.
15	3 rd	7.3. Explain tap changer (On/Off load tap changing)
	4.th	7.4. Maintenance Schedule of Power Transformers

